UWB at SemEval-2016 Task 7: Novel Method for Automatic Sentiment Intensity Determination
نویسندگان
چکیده
We present a novel method for determining sentiment intensity. The main goal is to assign a phrase a score from 0 to 1 which indicates the strength of its association with positive sentiment. The proposed model uses a rich set of features with Gaussian processes regression model that computes the final score. The system was evaluated on the data from 7th task of SemEval 2016. Our regression model trained on the development data reached Kendall rank correlation of 0.659 on general English phrases and 0.414 on English Twitter test data.
منابع مشابه
ECNU at SemEval-2016 Task 7: An Enhanced Supervised Learning Method for Lexicon Sentiment Intensity Ranking
This paper describes our system submissions to task 7 in SemEval 2016, i.e., Determining Sentiment Intensity. We participated the first two subtasks in English, which are to predict the sentiment intensity of a word or a phrase in English Twitter and General English domains. To address this task, we present a supervised learning-to-rank system to predict the relevant scores, i.e., the strength ...
متن کاملiLab-Edinburgh at SemEval-2016 Task 7: A Hybrid Approach for Determining Sentiment Intensity of Arabic Twitter Phrases
This paper describes the iLab-Edinburgh Sentiment Analysis system, winner of the Arabic Twitter Task 7 in SemEval-2016. The system employs a hybrid approach of supervised learning and rule-based methods to predict a sentiment intensity (SI) score for a given Arabic Twitter phrase. First, the supervised method uses an ensemble of trained linear regression models to produce an initial SI score fo...
متن کاملUWB at SemEval-2016 Task 5: Aspect Based Sentiment Analysis
This paper describes our system used in the Aspect Based Sentiment Analysis (ABSA) task of SemEval 2016. Our system uses Maximum Entropy classifier for the aspect category detection and for the sentiment polarity task. Conditional Random Fields (CRF) are used for opinion target extraction. We achieve state-of-the-art results in 9 experiments among the constrained systems and in 2 experiments am...
متن کاملNileTMRG at SemEval-2016 Task 7: Deriving Prior Polarities for Arabic Sentiment Terms
This paper presents a model that was developed to address SemEval Task 7: “Determining Sentiment Intensity of English and Arabic Phrases”, with focus on ‘Arabic Phrases’. The goal of this task is to determine the degree to which some given term is associated with positive sentiment. The underlying premise behind the model that we have adopted is that determining the context (positive or negativ...
متن کاملUWB at SemEval-2016 Task 6: Stance Detection
This paper describes our system participating in the SemEval 2016 task: Detecting stance in Tweets. The goal was to identify whether the author of a tweet is in favor of the given target or against. Our approach is based on a maximum entropy classifier, which uses surface-level, sentiment and domain-specific features. We participated in both the supervised and weakly supervised subtasks and rec...
متن کامل